Acta Cryst. (1962). 15, 410

The Crystal Structure of B₁₀H₁₂[S(CH₃)₂]₂.*

BY DONALD E. SANDS

Lawrence Radiation Laboratory, University of California, Livermore, California, U.S.A.

AND ALLAN ZALKIN

Lawrence Radiation Laboratory, University of California, Berkeley, California, U.S.A.

(Received 22 June 1961)

 $B_{10}H_{12}[S(CH_3)_2]_2$ is monoclinic with

 $a = 11.83, b = 10.78, c = 12.74 \text{ Å}; \beta = 95.17^{\circ};$

the space group is $P2_1/c$ and there are four molecules per unit cell. The symmetry of the decaborane skeleton is retained in this derivative, but the four hydrogen bridges of decaborane are replaced by two bridges at positions 5, 10 and 7, 8. The substituent groups are attached to the 6, 9 positions. The structural details conform closely to those of $B_{10}H_{12}(CH_3CN)_2$.

Introduction

The structure \mathbf{of} \mathbf{the} decaborane derivative, B₁₀H₁₂(CH₃CN)₂, has been reported by Reddy & Lipscomb (1959). The interesting molecular features of this compound and the unusual interpretation given them in terms of the topological theory of boron hydrides have prompted the determination of the structure of a derivative involving a different electron donor. Since the molecules in crystals of $B_{10}H_{12}[S(CH_8)_2]_2$ lie in general positions with all atoms crystallographically independent, this structure provides a rigorous test of the molecular symmetry unconstrained by the crystal lattice.

Experimental

Oscillation and Weissenberg photographs of single crystals of $B_{10}H_{12}[S(CH_3)_2]_2$, taken with Cu $K\alpha$ radiation ($\lambda = 1.5418$ Å), revealed a monoclinic unit cell with

$$a = 11.83 \pm 0.02$$
, $b = 10.78 \pm 0.02$, $c = 12.74 \pm 0.02$ Å;
 $\beta = 95.17 \pm 0.10^{\circ}$.

The space group indicated by the systematic extinctions is $C_{2h}^5 - P2_1/c$; four molecules per unit cell give a calculated density of 1.032 g.cm.⁻³. A crystal used in this investigation had the approximate dimensions $0.3 \times 0.2 \times 0.1$ mm., with the *c*-axis of the monoclinic cell parallel to the longest edge.

Triple film Weissenberg exposures of the l=0through the l=9 layers of a *c*-axis oriented crystal were taken with Cu $K\alpha$ radiation. A second crystal, oriented about the *b*-axis, was used for the h0l and h1l layers. The intensities of 987 independent reflections, of which 328 were too weak to be observed, were obtained from these films by visual comparison with a standard scale. After correction for the Lorentz, polarization, and velocity factors these data were placed on the same scale by cross-correlating the layers from the two crystals.

Although these visually estimated intensities proved adequate for determining approximate parameters for the sulfur, carbon, and boron atoms, attempts to refine these parameters and to locate the hydrogen atoms indicated the need for better data. A crystal was mounted on a General Electric XRD-5 X-ray spectrometer equipped with a single-crystal orienter. The intensities of all reflections with $2\theta \ge 150^{\circ}$ were measured with Cu $K\alpha$ radiation using the stationary crystal-stationary counter technique and a kryptonfilled proportional counter. The settings were made for the $K\alpha_1$ position ($\lambda = 1.54050$ Å), and an empirical correction for the $\alpha_1 - \alpha_2$ dispersion was made (Tulinsky, Worthington & Pignataro, 1959). Forty-second counts were taken on all reflections. Background corrections were obtained from a plot of intensity versus angle made with the crystal out of reflecting position. The intensities of 3330 independent reflections, of which 1502 were not observable above background, were recorded.

The crystal decomposed on exposure to X-rays, manifested by a steady decrease in the diffracted intensities to about one-third of their initial values after 100 hours of exposure. The intensities of all reflections apparently decreased at the same rate, so a correction for this decay was obtained by monitoring a few standard reflections. An additional phenomenon was the appearance, after exposure to X-rays, of a diffuse spot along the (h00) row at $2\theta = 27 \cdot 9^{\circ}$. This spot, which was also observed on the photographs, increased in intensity at a decreasing rate until it was approximately one-tenth as strong as (200)—the strongest reflection present.

^{*} This work was performed under the auspices of the U.S. Atomic Energy Commission.

Determination of the structure

computed from the photographic data established that the sulfur atoms occupy two sets of general positions of space group $P2_1/c: \pm (x, y, z; x, \frac{1}{2} - y, \frac{1}{2} + z)$

Analysis of the three-dimensional Patterson function

 Table 1. Observed and calculated structure factors, FO and FC, respectively

 Values are multiplied by 10. Asterisks denote unobserved reflections

$ \begin{bmatrix} \mathbf{x} \\ \mathbf{x}$
$ \begin{array}{c} \mathbf{I} & \mathbf{PO} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 \\ 0 \\ 0 & 0 \\ 0 & 0 \\ $
H 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 6 1 2 3 4 5 6 7 8 7 1 2 3 4 5 7 1 2 3
I 170 1 1 1 1 1 1 1 1 1 1
K BO C C C C C C C C C C
I V O V 7 100 11 12 1 11 31 12 1 11 32 -7 1 1 13 190 2 1 13 190 2 1 200 -200 3 1 200 -200 1 1 13 190 2 1 200 -200 1 1 200 -200 1 1 14 67 1 1 100 -200 11 1 400 -300 11 1 400 -300 11 1 400 -300 12 2777 280 -300 10 2777 280 -300 11 2777 280 -300 11 2777 280 -300 10 27
$ \begin{array}{c} \mathbf{x} & \mathbf{\mu} & \mathbf{x} & \mathbf$
$ \begin{array}{c} \mathbf{a} & 1 \\ 5 & 5 & 0 \\ 5 & 5 & 1 \\ 5 & 5 & 0 \\ 5 & 5 & 1 \\ 5 & 5 & 0 \\ 5 & 5 & 1 \\ 5 & 5 & 0 \\ 5 & 5 & 1 \\ 5 & 5 & 5 \\ 5 & 5 & 1 \\ 5 & 5 & 5 \\ 5 & 5 & 1 \\ 5 & 5 & 5 \\ 5 & 5 & 1 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 & 5 \\ 5 & 5 & 5 & 5 \\ 5 & 5 & 5 & 5 \\ 5 & 5 & 5 & 5 \\ 5 & 5 & 5 & 5 \\ 5 & 5 & 5 & 5 \\ 5 & 5 & 5 & 5 \\ 5 & 5 & 5 & 5 \\ 5 & 5 & 5 & 5 \\ 5 & 5 & 5 & 5 \\ 5 & 5 & 5 & 5 \\ 5 & 5 & 5 & 5 \\ 5 & 5 & 5 & 5 \\ 5 & 5 & 5 & 5 \\ 5 & 5 & 5 & 5 \\ 5 & 5 & 5 & 5 \\ 5 & 5 & 5 & 5 \\ 5 & 5 & 5 & 5 \\ 5 & \mathbf$
$\begin{array}{c} -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 $
$ \begin{array}{c} \mathbf{s} \\ \mathbf$
$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$

I B C B C C C C C C C C C C
N. H K FO
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
F C C C C C C C C C C
I TO FC 7 0 65 -72 7 0 65 -72 7 0 65 -72 7 0 47 -101 7 0 47 -101 7 0 447 -101 7 0 447 -101 7 0 447 -101 7 0 447 -101 7 0 447 -101 7 0 447 -101 7 0 447 -101 7 0 447 -101 10 147 -144 -70 10 147 -144 -70 10 147 -144 -70 111 1455 100 -1420 111 447 -161 -70 111 447 -70 -70 111 447
$ \begin{array}{c} \textbf{E} & \textbf{FO} & \textbf{FC} \\ 2 & 7 & 104 & -106 \\ 3 & 7 & 7 & 406 & -36 \\ 5 & 7 & 446 & -36 \\ 7 & 7 & 47 & -17 \\ 7 & 7 & 47 & -17 \\ 7 & 7 & 47 & -17 \\ 7 & 7 & 47 & -17 \\ 7 & 7 & 47 & -17 \\ 1 & 7 & 7 & 47 & -17 \\ 1 & 7 & 7 & 47 & -17 \\ 1 & 7 & 7 & 47 & -17 \\ 1 & 7 & 7 & 47 & -17 \\ 1 & 7 & 7 & 47 & -17 \\ 1 & 7 & 7 & 47 & -17 \\ 1 & 7 & 7 & 47 & -17 \\ 1 & 7 & 7 & 47 & -17 \\ 1 & 7 & 7 & 47 & -17 \\ 1 & 7 & 7 & 47 & -17 \\ 1 & 7 & 7 & 47 & -17 \\ 1 & 7 & 7 & 47 & -17 \\ 1 & 7 & 7 & 47 & -17 \\ 1 & 8 & 180 & -106 \\ 5 & 6 & 8 & 47 & -17 \\ 8 & 68 & 680 & -161 \\ 1 & 8 & 87 & -17 \\ 8 & 68 & 667 & -161 \\ 1 & 8 & 87 & -17 \\ 8 & 68 & 667 & -17 \\ 1 & 9 & 46 & -18 \\ 1 & 9 & 46 & -17 \\ 1 & 9 & 46 & -17 \\ 1 & 9 & 46 & -17 \\ 1 & 9 & 46 & -17 \\ 1 & 9 & 46 & -17 \\ 1 & 9 & 46 & -17 \\ 1 & 9 & 46 & -17 \\ 1 & 9 & 46 & -18 \\ 1 & 9 & 46 & -17 \\ 1 & 9 & 46 & -18 \\ 1 & 9 & 46 & -17 \\ 1 & 9 & 46 & -18 \\ 1 & 9 & 46 & -17 \\ 1 & 9 & 46 & -17 \\ 1 & 9 & 46 & -17 \\ 1 & 9 & 46 & -17 \\ 1 & 11 & 9 & 77 \\ 1 & 11 & 9 & 77 \\ 1 & 11 & 77 & -14 \\ 1 & 10 & 9 & 45 & -107 \\ 1 & 10 & 9 & 77 & -16 \\ 1 & 10 & 9 & 77 & -16 \\ 1 & 10 & 9 & 77 & -16 \\ 1 & 10 & 9 & 77 & -16 \\ 1 & 10 & 9 & 77 & -16 \\ 1 & 10 & 9 & 77 & -16 \\ 1 & 10 & 9 & 77 & -16 \\ 1 & 10 & 9 & 77 & -16 \\ 1 & 10 & 9 & 77 & -16 \\ 1 & 10 & 77 & -16 \\ 1 & 10 & 77 & -16 \\ 1 & 10 & 77 & -16 \\ 1 & 10 & 77 & -16 \\ 1 & 10 & 77 & -16 \\ 1 & 10 & 77 & -16 \\ 1 & 10 & 77 & -16 \\ 1 & 10 & 77 & -16 \\ 1 & 10 & 77 & -16 \\ 1 & 10 & 77 & -16 \\ 1 & 10 & 77 & -16 \\ 1 & 10 & 77 & -16 \\ 1 & 10 & 77 & -16 \\ 1 & 77 & 77 & -16 \\ 1 & 77 & 77 & -16 \\ 1 & 77 & 77 & -16 \\ 1 & 77 & 77 & -16 \\ 1 & 77 & 77 & -16 \\ 1 & 77 & 77 & -16 \\ 1 & 77 & 77 & -16 \\ 1 & 77 & $
$ \begin{array}{c} \textbf{I} \qquad \textbf{YD} \qquad$
$ \begin{array}{c} \mathbf{x} & \mathbf$
E b c b c c c c c c c c c c
T F P P P P P P P P P P

(International Tables for X-ray Crystallography, vol.1, 1952), with approximate parameters 0.245, 0.81, 0.485 and 0.26, 0.09, 0.79. The geometric parts of the struc-

ture factor contributions of these sulfur atoms were calculated for the 659 observed reflections. Of these, 248 were greater than 0.6 in magnitude (the maximum

I KK7890011274567800127455K780127445K780127445K012724012721144444725547745K780012730127445K7800127222222222222222222222222222222222
D 40 40 41 18 35 1 37 4 4 5 7 7 5 5 3 7 8 3 5 8 5 7 5 5 4 5 7 7 5 10 7 5 1 6 7 5 5 1 7 5 1 7 7 7 5 1 5 1 7 5 7 5 1 5 7 5 5 1 5 7 5 5 5 5
x x v v v v v v v v v v
$ \begin{array}{c} \mathbf{x} \mathbf{x} \mathbf{y} $
$ \begin{array}{c} \mathbf{a} & \mathbf{A} & \mathbf{r} \\ \mathbf{b} & 3 & \mathbf{a} \\ 5 & 3 & \mathbf{a} \\ 5 & 3 & \mathbf{a} \\ 5 & 76 \\ 6 & 76 \\ 7 & 76 \\ 7 & 76 \\ 7 & 76 \\ 7 & 76 \\ 7 & 76 \\ 7 & 76 \\ 7 & 76 \\ 7 & 76 \\ 7 & 76 \\ 7 & 76 \\ 7 & 76 \\ 7 & 76 \\ 7 & 76 \\ 7 & 76 \\ 7 & 76 \\ 7 & 76 \\ 7 & 76 \\ 7 \\ 7 & 76 \\ 7 \\ $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
- -
$ \begin{array}{c} \bullet \bullet \bullet 375 \\ \bullet \bullet \bullet 575 \\ $
$\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 2 \\ 4 \\ 5 \\ 2 \\ 4 \\ 5 \\ 2 \\ 4 \\ 5 \\ 2 \\ 4 \\ 5 \\ 2 \\ 4 \\ 5 \\ 2 \\ 4 \\ 5 \\ 2 \\ 4 \\ 5 \\ 2 \\ 5 \\ 4 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$
US7109840877774849209071808297848984 7081479487848784139018606095274914645 4375040537990

possible was 2-0), and these terms were used in calculating a three-dimensional Fourier map. Only two of these 248 phases were eventually found to be incorrect.

In addition to confirming the sulfur atom positions this Fourier showed two of the carbon atoms and six of the boron atoms. A second three-dimensional Fourier was computed using the 448 terms for which the contributions of these atoms was largest. At this stage positions were obtained for all except the hydrogen atoms. The parameters were refined by the method of least squares, using the IBM 704 program of Busing & Levy (1959a). Individual isotropic temperature factors were assigned to all atoms and were included in the refinements. Ten scale factors were also refined, one for each value of l. The atomic scattering factors used were those of Viervoll & Øgrim (1949) for S, Berghuis *et al.* (1955) for C, Ibers (1957) for B, and McWeeny (1951) for H. Only the observed reflections were used. The final reliability factor, $R = \Sigma |F_o - F_c| / \Sigma F_o$, was 0.174.

The results of these refinements were used in the computation of a difference Fourier. Only four hydrogen atoms were unambiguously located by this calculation, and attempts to refine the positions of these atoms by the least squares method were unsuccessful. Furthermore, the boron-boron distances obtained at this stage of the analysis did not agree with those of $B_{10}H_{12}(CH_3CN)_2$ (Reddy & Lipscomb, 1959), nor were they consistent with the C_{2v} molecular symmetry of decaborane (Kasper, Lucht & Harker, 1950). All subsequent work was, therefore, carried out using the counter data.

Only the 1828 observed reflections were used in most of the remaining work. After refining the S, C, and B positions and isotropic temperature factors with this improved data to a reliability factor of 0.20, another difference Fourier was computed. Approx-

Table 2.	Atomic	parameters	of]	$B_{10}H_{12}$	S	(CH_3)	2	2

Atom	x	y	2	B (Å ²)
SI	0.2424 + 0.0003	0.6965 + 0.0002	0.9760 + 0.0002	_
S 2	0.2648 ± 0.0003	0.0874 + 0.0003	0.7904 + 0.0002	
ClA	0.355 + 0.001	0.673 + 0.001	0.080 + 0.001	_
C1 <i>B</i>	0.111 + 0.001	0.686 + 0.001	0.043 + 0.001	
C2A	0.394 ± 0.001	0.047 + 0.001	0.872 + 0.001	
C2B	0.157 ± 0.001	0.029 ± 0.001	0.872 ± 0.001	
Bl	0.303 ± 0.001	0.484 ± 0.001	0.687 ± 0.001	$6 \cdot 1 + 0 \cdot 3$
B2	0.227 ± 0.001	0.577 ± 0.001	0.767 ± 0.001	$5 \cdot 4 \pm 0 \cdot 2$
B3	0.150 ± 0.001	0.471 ± 0.001	0.687 ± 0.001	$5\cdot9\pm0\cdot3$
B4	0.236 ± 0.001	0.337 ± 0.001	0.689 ± 0.001	$4 \cdot 8 \pm 0 \cdot 2$
B5	0.358 ± 0.001	0.526 ± 0.001	0.814 ± 0.001	$5\cdot 8 \pm 0\cdot 3$
B6	0.243 ± 0.001	0.541 + 0.001	0.901 + 0.001	4.7 + 0.2
$\mathbf{B7}$	0.109 ± 0.001	0.503 ± 0.001	0.816 + 0.001	5.8 + 0.3
B8	0.119 ± 0.001	0.339 ± 0.001	0.765 ± 0.001	$5\cdot9\pm0\cdot3$
B9	0.255 ± 0.001	0.263 ± 0.001	0.812 ± 0.001	$4 \cdot 9 \pm 0 \cdot 2$
B10	0.368 ± 0.001	0.360 ± 0.001	0.761 ± 0.001	$5\cdot7 \pm 0\cdot3$
HI	0.31 ± 0.01	0.53 + 0.01	0.60 + 0.01	
$\mathbf{H2}$	0.22 ± 0.01	0.68 ± 0.01	0.76 ± 0.01	
$\mathbf{H3}$	0.11 ± 0.01	0.51 ± 0.01	0.60 + 0.01	
H4	0.23 ± 0.01	0.27 ± 0.01	0.63 ± 0.01	
H5	0.44 ± 0.01	0.58 ± 0.01	0.83 ± 0.01	
H6	0.25 ± 0.01	0.47 ± 0.01	0.96 ± 0.01	
H7	0.02 ± 0.01	0.54 ± 0.01	0.83 ± 0.01	_
$\mathbf{H8}$	0.03 ± 0.01	0.29 ± 0.01	0.75 + 0.01	
$\mathbf{H9}$	0.26 ± 0.01	0.28 ± 0.01	0.90 ± 0.01	
H10	0.45 ± 0.01	0.33 ± 0.01	0.75 ± 0.01	
H7-8	0.11 ± 0.01	0.40 ± 0.01	0.84 ± 0.01	
H_{5-10}	0.37 + 0.01	0.42 + 0.01	0.84 ± 0.01	

imate positions were obtained for the 12 decaborane hydrogen atoms, but the methyl group hydrogens were still not clearly established. The four largest peaks on this difference map consisted of two peaks near each of the sulfur atoms, suggesting anisotropic thermal motion. Anisotropic temperature factors were assigned to the S and C atoms and were refined along with the positions of these atoms (the B and H parameters were kept fixed in this treatment). The reliability factor after this calculation was 0.148; when the H atoms were omitted it was 0.153. The standard error of fit, $[\Sigma(F_o-F_c)^2/(m-n)]^{\frac{1}{2}}$, was 2.4. m = 1828 was the number of observations, n = 95 was the number parameters being adjusted. It has not proved possible to refine the parameters of the decaborane hydrogens, nor did a final difference Fourier locate the methyl hydrogens.

Table 1 compares the observed and calculated structure factors; the values listed have been multiplied by 10.

Table 2 lists the parameters of the atoms, including the isotropic temperature factors of the boron atoms. The standard errors listed were computed by Busing & Levy's least-squares program by the method given in the *International Tables for X-ray Crystallography*, vol. 2, pp. 330 (1959). The errors given for the hydrogen atom parameters, however, are estimates based on the assumption of mm^2 molecular symmetry.

Transformation to Cartesian coordinates

For ease in visualizing and discussing this structure, the parameters have been transformed to a set of Cartesian axes aligned with the symmetry elements of the decaborane molecule. An orthogonal system was selected with axes normalized to 1.4 and b' and c' parallel to the monoclinic **b** and **c**, respectively. The molecule was rotated in this system of axes to make the average boron-boron vector given by

Table 3. Atomic parameters of B₁₀H₁₂[S(CH₃)₂]₂ transformed to a 1A Cartesian system

Atom	x'	y'	z'
S 1	0.037	3.534	8.893
S2	-0.003	-3.457	9.083
ClA	1.22	3.68	10.26
C1B	-1.60	3.86	9.67
C2A	1.39	-3.59	10.25
C2B	-1.42	-3.57	10.23
B1	0.93	-0.05	6.33
B2	0.00	1.37	6.90
B3	-0.91	0.00	6.31
B4	0.01	- 1.41	6.89
B5	1.49	0.95	7.73
$\mathbf{B6}$	0.00	1.62	8.61
$\mathbf{B7}$	-1.53	0.96	7.73
$\mathbf{B8}$	-1.21	-0.94	7.73
$\mathbf{B9}$	0.01	-1.59	8.65
B10	1.50	-0.95	7.72
HI	1.1	0.0	$5 \cdot 2$
H2	-0.1	$2 \cdot 4$	$6 \cdot 4$
H3	-1.5	0.3	$5 \cdot 4$
H4	-0.4	-2.3	$6 \cdot 3$
H5	$2 \cdot 5$	1.3	7.5
$\mathbf{H6}$	0.4	$1 \cdot 2$	9.6
H7	-2.6	1.6	7.6
$\mathbf{H8}$	2.6	-1.5	$7 \cdot 8$
$\mathbf{H9}$	$0 \cdot 1$	- l·l	9.8
H10	$2 \cdot 6$	-1.4	7.6
H7-8	1.4	0.0	$8 \cdot 3$
H_{5-10}	1.7	0.0	8.5

Table 4. Anisotropic temperature factors, before and after transformation to Cartesian axes

		Component						
\mathbf{Atom}	Tensor	11	22	33	12	13	23	
S 1	B B'	$0.0152 \pm 0.0004 \\ 2.07$	$0.0074 \pm 0.0002 \\ 0.86$	0.0082 ± 0.0002 1.31	$0.0002 \pm 0.0002 \\ 0.01$	$0.0020 \pm 0.0002 \\ 0.19$	$- \begin{array}{c} - 0.0005 \pm 0.0002 \\ 0.09 \end{array}$	
S2	В В'	0.0190 ± 0.0004 2.58	$0.0081 \pm 0.0002 \\ 0.91$	0.0080 ± 0.0002 1.33	$0.0005 \pm 0.0003 \\ 0.07$	$0.0033 \pm 0.0002 \\ 0.37$	$- \begin{array}{c} - 0.0006 \pm 0.0002 \\ 0.03 \end{array}$	
C1A	$_{\rm B'}^{\rm B}$	0.0172 ± 0.0017 2.48	0.0130 ± 0.0014 1.27	0.0123 ± 0.0012 2.22	$- \begin{array}{c} - 0 \cdot 0002 \pm 0 \cdot 0013 \\ - 0 \cdot 23 \end{array}$	$- \begin{array}{c} - 0 \cdot 0020 \pm 0 \cdot 0011 \\ - 0 \cdot 46 \end{array}$	-0.0036 ± 0.0010 -0.17	
C1 <i>B</i>	$_{\rm B'}^{\rm B}$	$0.0183 \pm 0.0017 \\ 2.25$	0.0230 ± 0.0020 1.92	0.0180 ± 0.0016 3.72	-0.0035 ± 0.0016 0.13	0.0101 ± 0.0014 1.19	-0.0083 ± 0.0015 -0.85	
C2A	$_{\rm B'}^{\rm B}$	0.0138 ± 0.0014 1.95	0.0126 ± 0.0013 1.70	0.0166 ± 0.0015 2.37	0.0038 ± 0.0011 0.45	$0.0025 \pm 0.0012 - 0.02$	0.0016 ± 0.0011 0.59	
C2B	$_{\rm B'}^{\rm B}$	0.0150 ± 0.0015 2.03	0.0128 ± 0.0012 2.08	0.0147 ± 0.0013 1.82	-0.0014 ± 0.0011 -0.23	0.0017 ± 0.0011 0.19	0.0048 ± 0.0011	

B5-B7, B1-B3, B8-B10 parallel to a' and the average of B5-B10, B7-B8, B2-B4, B6-B9, parallel to b'. (The S-S and C-C vectors deviated too much from the assumed symmetry to be included in the derivation of this transformation). Finally, the molecule was translated to place the molecular 2-fold axis coincident with c'. The resultant transformation, in terms of a matrix M and a vector t, was applied to the atomic coordinates, x, to give $\mathbf{x}' = M\mathbf{x} + \mathbf{t}$, where

		/ 11.792	0.868	-1.209		/-2.246	
M	=	-0.867	10.018	4.682)	, t =	-7.803	١.
		\ 0.402	-3.889	11.787/		\ 0 /	

These transformed coordinates are listed in Table 3.

The transformation of the anisotropic temperature factors to the orthonormal system, derived from the invariance of the quadratic form $\Sigma \beta_{ij} h_i h_j$, is $B' = MBM^T$, where B is the anisotropic temperature factor tensor in terms of the original monoclinic axes,

Table 5. Principal values and directions of anisotropic temperature factors

$\dot{\text{Atom}}$	Com- ponent	Principal value	Direction referred to Cartesian axes		
S1	1 2 3	$2.12 \\ 0.85 \\ 1.29$	$\begin{array}{cccc} (0.973, & 0.020, & 0.228) \\ (-0.026, & -0.980, & 0.196) \\ (-0.228, & 0.197, & 0.954) \end{array}$		
S2	1 2 3	$2.69 \\ 0.90 \\ 1.22$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
C1A	1 2 3	2.83 1.16 1.98	(-0.805, 0.054, 0.591) (0.256, 0.930, 0.263) (0.535, -0.364, 0.762)		
C1 <i>B</i>	1 2 3	$2.18 \\ 1.14 \\ 4.56$	$\begin{array}{cccc} (-0.674, -0.729, & 0.120) \\ (-0.600, & 0.635, & 0.486) \\ (0.431, -0.256, & 0.865) \end{array}$		
C2.A	1 2 3	$2.09 \\ 1.15 \\ 2.77$	$\begin{array}{ccccc} (-0.845, -0.247, & 0.474) \\ (0.455, -0.798, & 0.396) \\ (0.280, & 0.550, & 0.786) \end{array}$		
C2B	1 2 3	$2.12 \\ 2.72 \\ 1.09$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		

Table 6.	Comparison of bond lengths of
${ m B_{10}H_{12}[S(CH;$	$[3)_2]_2$, $B_{10}H_{12}(CH_3CN)_2$, and $B_{10}H_{14}$

	${\rm B_{10}H_{12}[S(CH_3)_2]_2}$	$\rm B_{10}H_{12}(\rm CH_3CN)_2$	$B_{10}H_{14}$
${ S1-C1A \ -C1B \ -B6 }$	$\begin{array}{c} 1 \cdot 81 \pm 0 \cdot 01 \text{ \AA} \\ 1 \cdot 84 \pm 0 \cdot 02 \\ 1 \cdot 93 \pm 0 \cdot 01 \end{array}$	 	
S2-C2A C2B B9	$\begin{array}{c} 1 \cdot 82 \pm 0 \cdot 01 \\ 1 \cdot 83 \pm 0 \cdot 01 \\ 1 \cdot 92 \pm 0 \cdot 01 \end{array}$		
B1B2 B3 B4 B5 B10 H1	$1.76 \pm 0.02 \\ 1.84 \pm 0.02 \\ 1.76 \pm 0.02 \\ 1.80 \pm 0.02 \\ 1.77 \pm 0.02 \\ 1.17$	1·764 Å 1·837 1·749 1·790 1·766 1·18	1.80 Å 1.71 1.78 1.77 1.78 1.16
B2–B3 –B5 –B6 –B7 –H2	$1.74 \pm 0.02 \\ 1.76 \pm 0.02 \\ 1.74 \pm 0.02 \\ 1.78 \pm 0.02 \\ 1.12$	1.749 1.742 1.746 1.746 1.746 1.10	1·78 1·80 1·72 1·76 1·27
B3–B4 –B7 –B8 –H3	$\begin{array}{c} 1\cdot 78\pm 0\cdot 02\\ 1\cdot 81\pm 0\cdot 02\\ 1\cdot 80\pm 0\cdot 02\\ 1\cdot 35\end{array}$	1·764 1·766 1·790 1·18	1·80 1·78 1·77 1·16
B4B8 B9 B10 H4	$\begin{array}{c} 1 \cdot 79 \pm 0 \cdot 02 \\ 1 \cdot 76 \pm 0 \cdot 02 \\ 1 \cdot 77 \pm 0 \cdot 02 \\ 1 \cdot 19 \end{array}$	1.742 1.746 1.746 1.10	1·80 1·72 1·76 1·27
B5–B6 –B10 –H5 –H5–10	$ \begin{array}{r} 1 \cdot 87 \pm 0.02 \\ 1 \cdot 91 \pm 0.02 \\ 0.91 \\ 0 \cdot 1.23 \end{array} $	1.860 1.881 1.11 1.23	1·77 2·01 1·22
${f B6-B7}\ -{f H6}$	1.88 ± 0.02 1.13	1·849 1·C6	$1.77 \\ 1.28$
B7–B8 –H7 –H7–8	$1 \cdot 91 \pm 0 \cdot 02$ $1 \cdot 27$ $1 \cdot 22$	1 · 881 1 · 06 1 · 22	2·01 1·35
B8–B9 –H8 –H7–8	1.88 ± 0.02 1.25 1.02	1·860 1·11 1·23	1·77 1·22
B9B10 -H9	1.87 ± 0.02 1.25	$\begin{array}{c} 1 \cdot 849 \\ 1 \cdot 06 \end{array}$	1.77 1.28
B10-H10 -H5-10	$\begin{array}{c}1\cdot17\\1\cdot31\end{array}$	1·06 1·22	1.35

B' is the transformed tensor, and M^T is the transpose of matrix M. The principal axes of the thermal vibration ellipsoids are obtained from the characteristic equations of the B' tensors. These calculations have been checked by Waser's method (1955) by which the principal axes were found in terms of the monoclinic axes; the reciprocal lattice directions obtained were converted to our Cartesian system by the matrix $(M^{-1})^T$. Both the original and the transformed components of the thermal vibration tensors of the S and C atoms are listed in Table 4. The principal values and directions of the principal axes, referred to the Cartesian coordinate system, are given in Table 5.

Discussion

Table 6 lists the interatomic distances of the $B_{10}H_{12}[S(CH_3)_2]_2$ molecule. The corresponding distances of $B_{10}H_{12}(CH_3CN)_2$ (Reddy & Lipscomb, 1959) and of $B_{10}H_{14}$ (Moore, Dickerson & Lipscomb, 1957) are included for comparison. The distances and standard errors of $B_{10}H_{12}[S(CH_3)_2]_2$ were computed by Busing & Levy's IBM 704 Function and Error Program (1959b). The standard deviations of the $B_{10}H_{12}(CH_3CN)_2$ distances are 0.008 for B–B and 0.04 for B–H; in the case of $B_{10}H_{14}$ the standard deviations are 0.016 for B–B and 0.09 for B–H.

The $B_{10}H_{12}[S(CH_3)_2]_2$ distances other than those

Fig. 1. Bond lengths of $B_{10}H_{12}[S(CH_3)_2]_2$.

Fig. 2. Molecular packing in $B_{10}H_{12}[S(CH_3)_2]_2$.

involving hydrogen are shown in Fig. 1; bond lengths related by the molecular symmetry are seen to agree closely.

The C–S–C bond angles $(104\cdot 2 \pm 1\cdot 4^{\circ} \text{ and } 100\cdot 6 \pm 1\cdot 3^{\circ})$ and S–C bond lengths are within experimental error of the angle of about 105° and distance of 1.82 Å reported for (CH₃)₂S by Brockway & Jenkins (1936). The S–B bond lengths are what would be expected for a normal covalent bond.

The decaborane structure has four hydrogens bridging the pairs B5–B6, B6–B7, B8–B9, B9–B10; both $B_{10}H_{12}[S(CH_3)_2]_2$ and $B_{10}H_{12}(CH_3CN)_2$ have just the two bridges B5–B10 and B7–B8. Although the corresponding distances in the two derivatives are very similar, they differ significantly from the distances in decaborane. However, the average of the 21 B–B bond lengths is 1.809 Å for $B_{10}H_{12}[S(CH_3)_2]_2$ and 1.792 Å for both $B_{10}H_{12}(CH_3CN)_2$ and $B_{10}H_{14}$. The average length of our 10 terminal B–H bonds is 1.18 Å, which is 0.08 Å greater than the corresponding average for $B_{10}H_{12}(CH_3CN)_2$ and 0.08 Å less than for decaborane.

Table 3 demonstrates the C_{2v} symmetry of the decaborane skeleton. The deviations of the $(CH_3)_2S$ groups from this symmetry may perhaps be attributed to steric effects. Reddy & Lipscomb (1959) have discussed the valence structure of $B_{10}H_{12}(CH_3CN)_2$ in terms of the topological theory of boron hydrides (Dickerson & Lipscomb, 1957). The structure is compatible with this representation if it is regarded as a substitution derivative of the $B_{10}H_{12}^{-2}$ ion, which has C_{2v} symmetry. Reddy & Lipscomb have suggested a possible mechanism for the reaction of an electron donor with this ion.

The arrangement of $B_{10}H_{12}[S(CH_3)_2]_2$ molecules in the monoclinic unit cell is shown in Fig. 2.

We wish to thank Dr M. F. Hawthorne of the Rohm & Haas Company for supplying us with samples of $B_{10}H_{12}[S(CH_3)_2]_2$. We also thank Dr Howard C. Hornig for his interest in this problem and for several valuable discussions. Finally, we express our appreciation to Mrs Iven M. Moen for assistance in the measurement of the spectrometric intensities.

References

- BERGHUIS, J., HAANAPPEL, IJ. M., POTTERS, M., LOOP-STRA, B. O., MACGILLAVRY, C. H. & VEENENDAAL, A. L. (1955). Acta Cryst. 8, 478.
- BROCKWAY, L. O. & JENKINS, H. O. (1936). J. Amer. Chem. Soc. 58, 2036.
- BUSING, W. R. & LEVY, H. A. (1959a). A Crystallographic Least Squares Refinement Program for the IBM 704. Oak Ridge National Laboratory Report 59-4-37.
- BUSING, W. R. & LEVY, H. A. (1959b). A Crystallographic Function and Error Program for the IBM 704. Oak Ridge National Laboratory Report 59-12-3.
- DICKERSON, R. E. & LIPSCOMB, W. N. (1957). J. Chem. Phys. 27, 212.
- IBERS, J. A. (1957). Acta Cryst. 10, 86.
- International Tables for X-ray Crystallography (1952). Vol. 1. Birmingham: Kynoch Press.
- International Tables for X-ray Crystallography (1959). Vol. 2. Birmingham: Kynoch Press.
- KASPER, J. S., LUCHT, C. M. & HARKER, D. (1950). Acta Cryst. 3, 436.
- McWEENY, R. (1951). Acta Cryst. 4, 513.
- MOORE, E. B., Jr., DICKERSON, R. E. & LIPSCOMB, W. N. (1957). J. Chem. Phys. 27, 209.
- REDDY, J. VAN DER MAAS and LIPSCOMB, W. N. (1959). J. Chem. Phys. 31, 610.
- TULINSKY, A., WORTHINGTON, C. R. & PIGNATARO, E. (1959). Acta Cryst. 12, 623.
- VIERVOLL, H. & ØGRIM, O. (1949). Acta Cryst. 2, 277.
- WASER, J. (1955). Acta Cryst. 8, 731.

Short Communications

Contributions intended for publication under this heading should be expressly so marked; they should not exceed about 1000 words; they should be forwarded in the usual way to the appropriate Co-editor; they will be published as speedily as possible. Publication will be quicker if the contributions are without illustrations.

Acta Cryst. (1962). 15, 417

Atomic scattering amplitudes for electrons for some of the lighter elements. By B. DAWSON, Division of Chemical Physics, C.S.I.R.O. Chemical Research Laboratories, Melbourne, Australia

(Received 2 November 1961)

New values of atomic scattering amplitudes, $f_{e1}(s)$ ($s = \sin \theta / \lambda$), in the first Born approximation, have recently been derived for the neutral atoms Al to A inclusive by a process of interpolation (Dawson, 1961a). The interpolation procedure was concerned primarily with the derivation of values of the mean square radii $\langle r^2 \rangle$ of the atomic charge distributions, and it was observed that the main uncertainty in this procedure lay in values of $\langle r^2 \rangle_{sp}$ derived from curve C (Fig. 1 and Table 1(B) of Dawson, 1961a). To minimize this uncertainty, the upper (i.e. higher atomic number, Z) end of this curve was adjusted to give interpolated total $\langle r^2 \rangle$ values for Cl and A in best agreement with the polydetor $\langle r^2 \rangle$ result for Cl and the experimental $\langle r^2 \rangle$ value for argon. A more critical appraisal of various aspects of the interpolation process is now possible in view of recent Hartree-Fock calculations by Watson & Freeman (1961) for these neutral atoms and by Sachs (1961) for